Abstract

Abstract. Rivers play a key role in the global carbon cycle by transporting terrestrial organic matter (TerrOM) from land to the ocean. Upon burial in marine sediments, this TerrOM may be a significant long-term carbon sink, depending on its composition and properties. However, much remains unknown about the dispersal of different types of TerrOM in the marine realm upon fluvial discharge since the commonly used bulk organic matter (OM) parameters do not reach the required level of source- and process-specific information. Here, we analyzed bulk OM properties, lipid biomarkers (long-chain n-alkanes, sterols, long-chain diols, alkenones, branched and isoprenoid glycerol dialkyl glycerol tetraethers (brGDGTs and isoGDGTs)), pollen, and dinoflagellate cysts in marine surface sediments along two transects offshore the Mississippi–Atchafalaya River (MAR) system, as well as one along the 20 m isobath in the direction of the river plume. We use these biomarkers and palynological proxies to identify the dispersal patterns of soil–microbial organic matter (SMOM), fluvial, higher plant, and marine-produced OM in the coastal sediments of the northern Gulf of Mexico (GoM). The Branched and Isoprenoid Tetraether (BIT) index and the relative abundance of C32 1,15-diols indicative for freshwater production show high contributions of SMOM and fluvial OM near the Mississippi River (MR) mouth (BIT = 0.6, FC321,15 > 50 %), which rapidly decrease further away from the river mouth (BIT < 0.1, FC321,15 < 20 %). In contrast, concentrations of long-chain n-alkanes and pollen grains do not show this stark decrease along the path of transport, and especially n-alkanes are also found in sediments in deeper waters. Proxy indicators show that marine productivity is highest close to shore and reveal that marine producers (diatoms, dinoflagellates, coccolithophores) have different spatial distributions, indicating their preferred niches. Close to the coast, where food supply is high and waters are turbid, cysts of heterotrophic dinoflagellates dominate the assemblages. The dominance of heterotrophic taxa in shelf waters in combination with the rapid decrease in the relative contribution of TerrOM towards the deeper ocean suggest that TerrOM input may trigger a priming effect that results in its rapid decomposition upon discharge. In the open ocean far away from the river plume, autotrophic dinoflagellates dominate the assemblages, indicating more oligotrophic conditions. Our combined lipid biomarker and palynology approach reveals that different types of TerrOM have distinct dispersal patterns, suggesting that the initial composition of this particulate OM influences the burial efficiency of TerrOM on the continental margin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call