Abstract

Endogenous circadian clocks control the rhythmicity of a broad range of behavioral and physiological processes, and this is entrained by the daily fluctuations in light and dark. Nocturnin (Noct) is a rhythmically expressed gene regulated by the circadian clock that belongs to the CCR4 family of endonuclease-exonuclease-phosphatase (EEP) enzymes, and the NOCT protein exhibits phosphatase activity, catalyzing the removal of the 2'-phosphate from NADP(H). In addition to its daily nighttime peak of expression, it is also induced by acute stimuli. Loss of Nocturnin (Noct-/-) in mice results in resistance to high-fat diet-induced obesity, and loss of Noct in HEK293T cells confers a protective effect to oxidative stress. Modeling of the full-length Nocturnin protein reveals a partially structured amino terminus that is disparate from its CCR4 family members. The high sequence conservation of a leucine zipper-like (LZ-like) motif, the only structural element in the amino terminus, highlights the potential importance of this domain in modulating phosphatase activity. In vitro biochemical and biophysical techniques demonstrate that the LZ-like domain within the flexible N-terminus is necessary for preserving the active site cleft in an optimal conformation to promote the efficient turnover of the substrate. This modulation occurs in cis and is pivotal in maintaining the stability and conformational integrity of the enzyme. These new findings suggest an additional layer of modulating the activity of Nocturnin in addition to its rhythmicity to provide fine-tuned control over cellular levels of NADPH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.