Abstract

Toxic ratio TR is a valuable tool in the discrimination of excess toxicity from baseline effect. Although some authors realized that internal effect concentration or critical body residual (CBR) calculated from bioconcentration factor (BCF) should be used in the TR, the effect of BCF on the discrimination of excess toxicity from baseline effect has not been investigated. In this paper, 951 acute toxicity data to fish (LC50) and 1088 BCFs were used to investigate the relationship between TR and BCF. The results showed that some compounds identified as reactive compounds exhibit excess toxicity, but some do not. BCF is closely related to TR and can significantly affect the TR value. The real excess toxicity which is used to identify reactive chemicals from baseline should be based on the toxic ratio of internal effect concentrations, rather than on the ratio of external effect concentrations, TR. The use of LC50 alone to determine TR can result in errors in TR because toxicokinetics (as estimated by the BCF) are ignored. The foundation in the discrimination of excess toxicity from baseline effect is based on the linear relationship between log BCF and hydrophobicity expressed as log KOW. However, log BCF is not linearly related with log KOW for all the compounds. The BCFs with log KOW >7 or <0 are either overestimated or underestimated by the linear baseline BCF model. Parallel lines are observed from calculated log CBR values for baseline and less inert compounds. The log BCF values overestimated or underestimated by log KOW from the baseline BCF model can result in mis-prediction and mis-classification among baseline, less inert and reactive compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call