Abstract

Recently, the quaternionic quantum walk was formulated by the first author as a generalization of discrete-time quantum walks. We deal with the right eigenvalue problem of quaternionic matrices in order to study spectra of the transition matrix of a quaternionic quantum walk. The way to obtain all the right eigenvalues of a quaternionic matrix is given. From the unitary condition on the transition matrix of a quaternionic quantum walk, we deduce some remarkable properties of it. Our main results determine all the right eigenvalues of the quaternionic quantum walk by using those of the corresponding weighted matrix. In addition, we give some examples of quaternionic quantum walks and their right eigenvalues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.