Abstract

The mechanics of coarse-grained geomaterials have traditionally been examined from a continuum mechanics standpoint, but this has led to ever more complex constitutive models as an increasing number of novel aspects of behaviour are investigated. For this reason, there is a tendency to move towards discrete approaches. Such approaches require accurate definition and modelling of the particle shapes, for which considerable progress has been made, and also the contact mechanics between particles, about which little is known. For very coarse materials such as railway ballast, our understanding at the continuum scale has been hampered further by the technical difficulties in the laboratory testing so that the very small strain behaviour has been difficult to define with accuracy. New apparatus and techniques will be described to test ballast at both the continuum and particulate scales. These allow the small strain stiffness to be defined with accuracy in triaxial tests and to carry out precise particle-to-particle contact tests. At the particle contact scale, the behaviour is dominated by the roughness of the particles and their relatively sharp contacts, so that plasticity and particle wear predominate, which both change the contact properties significantly. It is the contact plasticity that then controls the decay in continuum stiffness with strain. The work emphasises the inadequacy of using simple linear and/or elastic DEM models calibrated from macro-scale tests rather than deriving the correct contact behaviour directly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call