Abstract

It is shown that relay-races as a form of concurrency, are widespread in such fields of human activity, as industry, defence, economics, politics, etc. The analytical description of J stages relay-races, in which participate M teams, is considered. The model based on the semi-Markov process theory allows investigating a process evolution in detail but is of little use for computer calculation of forfeit, which the winner team receives from loser teams. To adapt analytical description to computer calculations, the method based on sampling of continual time densities of passing stages is proposed. Due to the method, initial semi-Markov process is converted to semi-Markov process with degenerative distributions, and the task of forfeit calculation is reduced to the task of rigid schedules effectiveness analysis, in which schedules are selected stochastically from the densities samples. Formulae for the stochastic summation of forfeits, is obtained. The results may be used for optimal planning the activity of participant teams when passing the distance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.