Abstract
Magnetic fields likely play an important role in star formation, but the number of directly measured magnetic field strengths remains scarce. We observed the 38.3 and 38.5 GHz Class II methanol (CH3OH) maser lines toward the high-mass star-forming region NGC 6334 F for the Zeeman effect. The observed spectral profiles have two prominent velocity features that can be further decomposed through Gaussian component fitting. In several of these fitted Gaussian components we find significant Zeeman detections, with zB los in the range from 8 to 46 Hz. If the Zeeman splitting factor z for the 38 GHz transitions is of the order of ∼1 Hz mG−1, similar to that for several other CH3OH maser lines, then magnetic fields in the regions traced by these masers would be in the range of 8–46 mG. Such magnetic field values in high-mass star-forming regions agree with those detected in the better-known 6.7 GHz Class II CH3OH maser line. Since Class II CH3OH masers are radiatively pumped close to the protostar and likely occur in the accretion disk or the interface between the disk and outflow regions, such fields likely have significant impact on the dynamics of these disks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.