Abstract

The pathogenesis of cancer in human is still poorly understood. With the rapid development of high-throughput sequencing technologies, huge volumes of cancer genomics data have been generated. Deciphering that data poses great opportunities and challenges to computational biologists. One of such key challenges is to distinguish driver mutations, genes as well as pathways from passenger ones. Mutual exclusivity of gene mutations (each patient has no more than one mutation in the gene set) has been observed in various cancer types and thus has been used as an important property of a driver gene set or pathway. In this article, we aim to review the recent development of computational models and algorithms for discovering driver pathways or modules in cancer with the focus on mutual exclusivity-based ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.