Abstract

Hot Jupiters are generally observed to lack close planetary companions, a trend that has been interpreted as evidence for high-eccentricity migration. We present the discovery and validation of WASP-132 c (TOI-822.02), a 1.85 ± 0.10 R ⊕ planet on a 1.01 day orbit interior to the hot Jupiter WASP-132 b. Transiting Exoplanet Survey Satellite and ground-based follow-up observations, in conjunction with vetting and validation analysis, enable us to rule out common astrophysical false positives and validate the observed transit signal produced by WASP-132 c as a planet. Running the validation tools vespa and TRICERATOPS on this signal yields false-positive probabilities of 9.02 × 10−5 and 0.0107, respectively. Analysis of archival CORALIE radial velocity data leads to a 3σ upper limit of 28.23 ms−1 on the amplitude of any 1.01 day signal, corresponding to a 3σ upper mass limit of 37.35 M ⊕. Dynamical simulations reveal that the system is stable within the 3σ uncertainties on the planetary and orbital parameters for timescales of ∼100 Myr. The existence of a planetary companion near the hot Jupiter WASP-132 b makes the giant planet’s formation and evolution via high-eccentricity migration highly unlikely. Being one of just a handful of nearby planetary companions to hot Jupiters, WASP-132 c carries with it significant implications for the formation of the system and hot Jupiters as a population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.