Abstract

There is a long-standing debate over the origin of the metal-poor stellar populations of the Milky Way (MW) bulge, with the two leading scenarios being that these populations are either (i) part of a classical metal-poor spheroid or (ii) the same population as the chemically defined thick disc seen at the solar neighbourhood. Here we test whether the latter scenario can reproduce the observed chemical properties of the MW bulge. To do so we compare an N-body simulation of a composite (thin+thick) stellar disc – which evolves secularly to form a bar and a boxy/peanut (b/p) bulge – to data from APOGEE DR13. This model, in which the thick disc is massive and centrally concentrated, can reproduce the morphology of the metal-rich and metal-poor stellar populations in the bulge, as well as the mean metallicity and [α/Fe] maps as obtained from the APOGEE data. It also reproduces the trends, in both longitude and latitude, of the bulge metallicity distribution function (MDF). Additionally, we show that the model predicts small but measurable azimuthal metallicity variations in the inner disc due to the differential mapping of the thin and thick disc in the bar. We therefore see that the chemo-morphological relations of stellar populations in the MW bulge are naturally reproduced by mapping the thin and thick discs of the inner MW into a b/p.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.