Abstract

Microbial communities have not been studied using molecular approaches at high elevations on the African continent. Here we describe the diversity of microbial communities from ice and periglacial soils from near the summit of Mt. Kilimanjaro by using both Illumina and Sanger sequencing of 16S and 18S rRNA genes. Ice and periglacial soils contain unexpectedly diverse and rich assemblages of Bacteria and Eukarya indicating that there may be high rates of dispersal to the top of this tropical mountain and/or that the habitat is more conducive to microbial life than was previously thought. Most bacterial OTUs are cosmopolitan and an analysis of isolation by geographic distance patterns of the genus Polaromonas emphasized the importance of global Aeolian transport in the assembly of bacterial communities on Kilimanjaro. The eukaryotic communities were less diverse than the bacterial communities and showed more evidence of dispersal limitations and apparent endemism. Cercozoa dominated the 18S communities, including a high abundance of testate amoebae and a high diversity of endemic OTUs within the Vampyrellida. These results argue for more intense study of this unique high-elevation “island of the cryosphere” before the glaciers of Kilimanjaro disappear forever.

Highlights

  • High-elevation microbial diversity has been studied in several of the highest mountain ranges on Earth[1,2,3], microbial communities have not been studied at high elevation in the African continent and in particular, on the climate sensitive glaciers and periglacial soils on the top of Mt

  • Aerial deposition and post-depositional selection are the main drivers of microbial community composition at high elevations[8] but relatively little is known about their specific roles in the establishment of microbial communities

  • total organic carbon (TOC) has been traditionally correlated with viable microbial biomass and the value observed for Kilimanjaro soils are slightly higher than TOC levels of oligotrophic mineral soils found in extreme environments in Antarctica, high elevation sites in the Andes and the Atacama Desert[1,10,11]

Read more

Summary

Introduction

High-elevation microbial diversity has been studied in several of the highest mountain ranges on Earth[1,2,3], microbial communities have not been studied at high elevation in the African continent and in particular, on the climate sensitive glaciers and periglacial soils on the top of Mt. Microbial life at the top of this mountain has to cope with a complex interplay of parameters that are similar to those that could be found on Mars or other planetary bodies, such as a high UV flux, extreme diurnal freeze-thaw cycles, low atmospheric pressure and an extremely low nutrient content and water activity[9]. For this reason, these oligotrophic soils and glaciers have received some attention as Martian analogues prior to the launch of the Mars Science Laboratory (MSL) Curiosity Rover and as a field test for a planned Mars 2018 mission[9].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.