Abstract

In this paper, we study the Dirichlet problem of translating mean curvature equations over a domain via topological restrictions. Its main difficulty is the non-existence of a C^{0} a priori estimate for their classical solutions except few cases. Inspired by the work of Miranda and Giusti, we define a generalized solution of these Dirichlet problems and establish its general existence. We propose a non-closed-minimal (NCM) condition on the underlying domain. When the domain is mean convex and NCM, the generalized solution with continuous boundary data is the classical smooth solution. Moreover, the NCM assumption cannot be removed by a hemisphere example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.