Abstract
ABSTRACTWe study stochastic differential equations with jumps with no diffusion part, governed by a large class of stable-like operators, which may contain a drift term. For this class of operators, we establish the regularity of solutions to the Dirichlet problem up to the boundary as well as the usual stochastic characterization of these solutions. We also establish key connections between the recurrence properties of the jump process and the associated nonlocal partial differential operator. Provided that the process is positive (Harris) recurrent, we also show that the mean hitting time of a ball is a viscosity solution of an exterior Dirichlet problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.