Abstract

In this paper, under very general assumptions, we prove existence and regularity of distributional solutions to homogeneous Dirichlet problems of the form $$\begin{cases} \displaystyle - \Delta_{1} u = h(u)f & \text{in}\, \Omega,\newline u\geq 0& \text{in}\ \Omega, \newline u=0 & \text{on}\ \partial \Omega, \end{cases} $$ where, $\Delta_{1} $ is the $1$-laplace operator, $\Omega$ is a bounded open subset of $\mathbb{R}^N$ with Lipschitz boundary, $h(s)$ is a continuous function which may become singular at $s=0^{+}$, and $f$ is a nonnegative datum in $L^{N,\infty}(\Omega)$ with suitable small norm. Uniqueness of solutions is also shown provided $h$ is decreasing and $f>0$. As a by-product of our method a general theory for the same problem involving the $p$-laplacian as principal part, which is missed in the literature, is established. The main assumptions we use are also further discussed in order to show their optimality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call