Abstract
We discuss existence, uniqueness, regularity and boundary behaviour of solutions of the Dirichlet problem for the prescribed anisotropic mean curvature equation−div(∇u/1+|∇u|2)=−au+b/1+|∇u|2, where a,b>0 are given parameters and Ω is a bounded Lipschitz domain in RN. This equation appears in the modeling theory of capillarity phenomena for compressible fluids and in the description of the geometry of the human cornea.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.