Abstract
Estimating the counting function for the eigenvalues of the twisted bi-Laplacian leads to the Dirichlet divisor problem, which is then used to compute the trace of the heat semigroup and the Dixmier trace of the inverse of the twisted bi-Laplacian. The zeta function regularizations of the traces and determinants of complex powers of the twisted bi-Laplacian are computed. A formula for the zeta function regularizations of determinants of heat semigroups of complex powers of the twisted bi-Laplacian is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.