Abstract

The enzymatic degradation of the closely related insoluble polysaccharides; cellulose (β(1–4)-linked glucose) by cellulases and chitin (β(1–4)-linked N-acetylglucosamine) by chitinases, is of large biological and economical importance. Processive enzymes with different inherent directionalities, i.e. attacking the polysaccharide chains from opposite ends, are crucial for the efficiency of this degradation process. While processive cellulases with complementary functions differ in structure and catalytic mechanism, processive chitinases belong to one single protein family with similar active site architectures. Using the unique model system of Serratia marcescens with two processive chitinases attacking opposite ends of the substrate, we here show that different directionalities of processivity are correlated to distinct differences in the kinetic signatures for hydrolysis of oligomeric tetra-N-acetyl chitotetraose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call