Abstract

The growing interest in composite structures for new material applications makes it necessary to determine just how generally we can apply existing solidification theory to controlled three-phase ternary solidification. The Pb-Sn-Cd ternary eutectic system was used as a suitable model system to completely map the phase morphology as a function of G/R and compositions. By carefully controlling the freezing rate and the thermal gradient in the liquid ahead of the solid-liquid interface (in the range 400 to 500 C/cm) the following areas of interest were investigated: 1) the effect of growth velocity and composition on coupled structures, 2) ternary impurities and their effect on the minimum G/R for coupled growth in a binary system, 3) the effect of growth velocity and composition on the nonplanar interface structures, and 4) the adaptability of present theories (the constitutional supercooling criterion and Cline’s binary analysis) in predicting the region of coupled growth in a three-component eutectic system growing at steady-state. It was found that much of the one and two-phase directional solidification theory and terminology can be directly extended to a ternary eutectic system. This suggests a further extension to n-phase, m-component systems (m ≥ n) with at least a qualitative understanding of the solidification process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.