Abstract
H + was taken as a prototypical cation for complexation with the carbonyl oxygen of 3-oxa-, 3,5-dioxa-, and 3-thiacyclohexanones. The geometries of the complexes were fully optimized using ab initio MO calculations with 6-31G basis set. The complexation desymmetrizes the molecular geometry further to an extent that the torsion angle changes on the axial face can be rationally used for the prediction of the facial selectivity in reactions with nucleophiles. The torsion angle changes are sensitive to the nature, position, and orientation of the substitutents. Based on the theory of stereoelectronic control and corroborated by ab initio MO calculations, a simple approach to the prediction of facial control in reactions of selected substituted cyclohexanones with nucleophiles is described. Some evidence is also presented against the known transition state models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.