Abstract

Glycoproteins such as growth factor receptors and extracellular matrix have well-known functions in development and cancer progression, however, the glycans at sites of modification are often heterogeneous molecular populations which makes their functional characterization challenging. Here we provide evidence for a specific, discrete, well-defined glycan modification and regulation of a stage-specific cell migration in Caenorhabditis elegans. We show that a chain-terminating, putative null mutation in the gene encoding a predicted β1,4-N-acetylgalactosaminyltransferase, named ngat-1, causes a maternally rescued temperature sensitive (ts) defect in the second phase of the three phase migration pattern of the posterior, but not the anterior, hermaphrodite Distal Tip Cell (DTC). An amino-terminal partial deletion of ngat-1 causes a similar but lower penetrance ts phenotype. The existence of multiple ts alleles with distinctly different molecular DNA lesions, neither of which is likely to encode a ts protein, indicates that NGAT-1 normally prevents innate temperature sensitivity for phase 2 DTC pathfinding. Temperature shift analyses indicate that the ts period for the ngat-1 mutant defect ends by the beginning of post-embryonic development–nearly 3 full larval stages prior to the defective phase 2 migration affected by ngat-1 mutations. NGAT-1 homologs generate glycan-terminal GalNAc-β1-4GlcNAc, referred to as LacdiNAc modifications, on glycoproteins and glycolipids. We also found that the absence of the GnT1/Mgat1 activity [UDP-N-acetyl-D-glucosamine:α-3-D-mannoside β-1,2-N-acetylglucosaminyltransferase 1 (encoded by C. elegans gly-12, gly-13, and gly-14 and homologous to vertebrate GnT1/Mgat1)], causes a similar spectrum of DTC phenotypes as ngat-1 mutations–primarily affecting posterior DTC phase 2 migration and preventing manifestation of the same innate ts period as ngat-1. GnT1/Mgat1 is a medial Golgi enzyme known to modify mannose residues and initiate N-glycan branching, an essential step in the biosynthesis of hybrid, paucimannose and complex-type N-glycans. Quadruple mutant animals bearing putative null mutations in ngat-1 and the three GnT genes (gly-12, gly-13, gly-14) were not enhanced for DTC migration defects, suggesting NGAT-1 and GnT1 act in the same pathway. These findings suggest that GnTI generates an N-glycan substrate for NGAT-1 modification, which is required at restrictive temperature (25°C) to prevent, stabilize, reverse or compensate a perinatal thermo-labile process (or structure) causing late larval stage DTC phase 2 migration errors.

Highlights

  • The molecular mechanisms that regulate and guide cell and axon migrations have relevance to a variety of human neurological and mental health disorders as well as metastatic cancer

  • Phase 2 ventral-to-dorsal Distal Tip Cell (DTC) migration across the lateral epidermis occurs during the late 3rd larval stage of development and this migration frequently fails in unc-6/netrin mutants and mutants of the netrin receptor encoding genes unc-40 and unc-5

  • But not all of the ngat-1(ev821) mutant DTC migration defects were phase 2 DTC migration failures, nearly half of which were similar to those previously observed in mutants of unc-5, unc-40 and unc-6, while other phase 2 migration errors varied in migration pattern, LacdiNAc generating enzyme required for stereotypical cell migration including those that began migrating toward mid-body on the ventral body wall muscles (BWMs) migrated to the dorsal BWMs before reaching mid-body

Read more

Summary

Introduction

The molecular mechanisms that regulate and guide cell and axon migrations have relevance to a variety of human neurological and mental health disorders as well as metastatic cancer. The phase 2 navigation defects, largely confined to the posterior DTC, and the temperature-sensitivity of the ngat-1 mutants are unusual phenotypes that we discovered are shared with the triple null mutant of three genes (gly-12, gly-13 and gly14) These genes each encode an enzymatically active UDP-N-acetyl-D-glucosamine:α-3-Dmannoside β-1,2-N-acetylglucosaminyltransferase I [32] ( known as GnT1 or Mgat1), and together encode all of this Golgi enzyme activity, which is essential for hybrid, paucimannose, and complex-type N-glycan synthesis. The temperature-sensitive period for the gly-14; gly -12 gly-13 triple GnT1 mutant posterior DTC migration defects, as for the ngat-1 mutant, ends by the first larval stage of development, which surprisingly is nearly three full larval stages prior to the phase 2 DTC migration affected by these mutations This is an unusual finding for any gene known to regulate cell migration and supports the suggestion that NGAT-1 and GnT1 activities may modify the same N-glycoprotein target(s) required for normal phase 2 DTC migration—modifications that are required for robust adaptation in early development to temperature variation, as revealed by subsequent altered phase 2 DTC migration patterns

Materials and methods
Results
Findings
Discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call