Abstract

The grid theorem, originally proved in 1986 by Robertson and Seymour in Graph Minors V, is one of the most central results in the study of graph minors. It has found numerous applications in algorithmic graph structure theory, for instance in bidimensionality theory, and it is the basis for several other structure theorems developed in the graph minors project.In the mid-90s, Reed and Johnson, Robertson, Seymour and Thomas, independently, conjectured an analogous theorem for directed graphs, i.e. the existence of a function f : N-> N such that every digraph of directed tree width at least f(k) contains a directed grid of order k. In an unpublished manuscript from 2001, Johnson, Robertson, Seymour and Thomas give a proof of this conjecture for planar digraphs. But for over a decade, this was the most general case proved for the conjecture.Only very recently, this result has been extended by Kawarabayashi and Kreutzer to all classes of digraphs excluding a fixed undirected graph as a minor. In this paper, nearly two decades after the conjecture was made, we are finally able to confirm the Reed, Johnson, Robertson, Seymour and Thomas conjecture in full generality.As consequence of our results we are able to improve results by Reed 1996 on disjoint cycles of length at least l and by Kawarabayashi, Kobayashi, Kreutzer on quarter-integral disjoint paths. We expect many more algorithmic results to follow from the grid theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.