Abstract

The forward problem of Magnetoencephalography for an ellipsoidal inhomogeneous shell-model of the brain is considered. The inhomogeneity enters through a confocal ellipsoidal shell exhibiting different conductivity than the one of the brain tissue. It is shown that, as far as the leading quadrupolic moment of the exterior magnetic field is concerned, the complicated expression associated with the field itself is the same as in the homogeneous case, while the effect of the shell is focused on the form of the generalized dipole moment. In contrast to the spherical case, where no shell inhomogeneities are “readable” outside the skull, the ellipsoidal shells establish their existence on the exterior magnetic induction field in a way that depends not only on the geometry but also on the conductivity of the shell. The degenerated spherical results are fully recovered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.