Abstract
Polymer rings in solution are either permanently entangled or not. Permanent topological restrictions give rise to additional entropic interactions apart from the ones arising due to mere chain flexibility or excluded volume. Conversely, entangled polymer rings systems may be formed by closing randomly entangled flexible linear chains. The dependance of linking numbers between randomly entangled rings on the chain length, more specifically the second topological moment $<n^2>$, i.e. the average squared linking number, may be determined. In this paper, an approach recently discussed in mathematical physics and called abelian BF theory, is presented which allows to express the linking constraint in its simplest form, the Gauss integral, in terms of two gauge fields. The model of Brereton and Shah for a single ring entangled with many other surrounding rings is rederived. The latter model is finally used to calculate the second topological moment, in agreement with a recent result by Ferrari, Kleinert, and Lazzizzera obtained by using ${\rm n}$-component $\phi^4$ theory in the limit ${\rm n}\to 0$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.