Abstract

Abstract In this work, the direct geodesic problem in Cartesian coordinates on a triaxial ellipsoid is solved by an approximate analytical method. The parametric coordinates are used and the parametric to Cartesian coordinates conversion and vice versa are presented. The geodesic equations on a triaxial ellipsoid in Cartesian coordinates are solved using a Taylor series expansion. The solution provides the Cartesian coordinates and the angle between the line of constant v and the geodesic at the end point. An extensive data set of geodesics, previously studied with a numerical method, is used in order to validate the presented analytical method in terms of stability, accuracy and execution time. We conclude that the presented method is suitable for a triaxial ellipsoid with small eccentricities and an accurate solution is obtained. At a similar accuracy level, this method is about thirty times faster than the corresponding numerical method. Finally, the presented method can also be applied in the degenerate case of an oblate spheroid, which is extensively used in geodesy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.