Abstract
A systematic treatment is given of the Dirac quantisation condition for electromagnetic fluxes through two-cycles on a four-manifold space-time which can be very complicated topologically, provided only that it is connected, compact, oriented and smooth. This is sufficient for the quantised Maxwell theory on it to satisfy electromagnetic duality properties. The results depend upon whether the complex wave function needed for the argument is scalar or spinorial in nature. An essential step is the derivation of a "quantum Stokes' theorem" for the integral of the gauge potential around a closed loop on the manifold. This can only be done for an exponentiated version of the line integral (the "Wilson loop") and the result again depends on the nature of the complex wave functions, through the appearance of what is known as a Stiefel-Whitney cohomology class in the spinor case. A nice picture emerges providing a physical interpretation, in terms of quantised fluxes and wave functions, of mathematical concepts such as spin structures, spin-C structures, the Stiefel-Whitney class and Wu's formula. Relations appear between these, electromagnetic duality and the Atiyah-Singer index theorem. Possible generalisations to higher dimensions of space-time in the presence of branes is mentioned.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.