Abstract

In this paper, the propagation of sound in an acoustically narrow waveguide, the wall of which is lined with identical dipole resonators and masses on springs, is theoretically considered. It is shown that, in the frequency range above the resonant frequency of the resonators, sound waves exponentially attenuate, and the waveguide is locked. The width of this range depends on two parameters—the ratio of the cross-sectional areas of the resonators and the waveguide and the ratio of the mass of the resonator to the mass of the medium displaced by it. As the resonator mass decreases, the locking band width expands and may become infinite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call