Abstract

We combine the recently published CIZA galaxy cluster catalogue with the XBACs cluster sample to produce the first all-sky catalogue of X-ray clusters in order to examine the origins of the Local Group's peculiar velocity without the use of reconstruction methods to fill the traditional Zone of Avoidance. The advantages of this approach are (i) X-ray emitting clusters tend to trace the deepest potential wells and therefore have the greatest effect on the dynamics of the Local Group and (ii) our all-sky sample provides data for nearly a quarter of the sky that is largely incomplete in optical cluster catalogues. We find that the direction of the Local Group's peculiar velocity is well aligned with the CMB as early as the Great Attractor region 40 h^-1 Mpc away, but that the amplitude of its dipole motion is largely set between 140 and 160 h^-1 Mpc. Unlike previous studies using galaxy samples, we find that without Virgo included, roughly ~70% of our dipole signal comes from mass concentrations at large distances (>60 h^-1 Mpc) and does not flatten, indicating isotropy in the cluster distribution, until at least 160 h^-1 Mpc. We also present a detailed discussion of our dipole profile, linking observed features to the structures and superclusters that produce them. We find that most of the dipole signal can be attributed to the Shapley supercluster centered at about 150 h^-1 Mpc and a handful of very massive individual clusters, some of which are newly discovered and lie well in the Zone of Avoidance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call