Abstract
The goal of this study was to investigate the possible protective effects of sitagliptin against dyslipidemia-related kidney injury in apolipoprotein E knockout (apoE−/−) mice. Eight-week-old male apoE−/− mice were randomized to receive either a high fat diet (HFD, apoE−/− group) or HFD mixed with sitagliptin (sita + apoE−/− group) for 16 weeks. A control group of age- and gender-matched C57BL/6J mice were fed a HFD. The apoE−/− group exhibited increases in body weight and serum lipid levels in addition to high-density lipoprotein, and increases in 24-h urinary 8-hydroxy-2-deoxyguanosine and albuminuria excretion. Decreased insulin sensitivity was also observed in the apoE−/− group. These mice additionally contained enlargements of the glomerular mesangial matrix area, lipid deposition area, and renal interstitium collagen area. The apoE−/− group also demonstrated down-regulation of phosphorylated AMP-activated protein kinase (AMPK), increases in renal mRNA expression of transforming growth factor-beta 1 (TGF-β1) and fibronectin (FN), and increased protein expression of Akt, TGF-β1, FN and p38/ERK mitogen-activated protein kinase (MAPK). Sitagliptin treatment successfully ameliorated all the deleterious effects of dyslipidemia tested. To our knowledge, this is the first time that sitagliptin has been shown to reverse the renal dysfunction and structural damage induced by dyslipidemia in apoE−/− mice. Our results suggest that the renoprotective mechanism of sitagliptin may be due to a reduction in Akt levels, a restoration of AMPK activity, and inhibition of TGF-β1, FN, and p38/ERK MAPK signaling pathways.
Highlights
Dyslipidemia is one of the major risk factors for the progression of chronic kidney disease.This abnormal lipid metabolism is mainly manifested as elevated serum cholesterol levels, elevated triglyceride levels and altered apolipoprotein profile [1,2,3]
We explored the expression of AMPK, Akt, TGF-β1, FN, and p38/ERK mitogen-activated protein kinase (MAPK)
Our results demonstrate that sitagliptin treatment significantly increased phospho-AMPK, while reducing renal levels of TGF-β1, FN, phospho-p38 and phospho-ERK, as compared to the apoE−/− group
Summary
Dyslipidemia is one of the major risk factors for the progression of chronic kidney disease. This abnormal lipid metabolism is mainly manifested as elevated serum cholesterol levels, elevated triglyceride levels and altered apolipoprotein profile [1,2,3]. Recent investigations have suggested a correlation between the pathogenesis of primary kidney diseases and dyslipidemia. In nondiabetic patients presenting with proteinuria, the presence of elevated serum cholesterol and triglycerides levels resulted in a nearly two-fold increase in the rate of kidney failure, as compared to normolipidemic patients [7]. Apolipoprotein E knockout (apoE−/−) mice are a well-accepted animal model of hyperlipidemia, and have been used extensively to study the effects of this disease on atherosclerosis and renal injury [8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.