Abstract

Steenkrotin A 3 was isolated from Croton steenkampianus Gerstner, widely used in folk medicine for the treatment of coughs, fever, malaria, and rheumatism. Hanfeng Ding of Zhejiang University envisioned (Angew. Chem. Int. Ed. 2015, 54, 6905) that the intriguingly compact core of 3 could be assembled by reductive cyclization of the alde­hyde 1 to 2, followed by intramolecular aldol condensation. The diastereoselective assembly of 1 from the cycloheptenone core 4 depended on the conformational preferences of the seven-membered ring. Enol ether forma­tion followed by Rubottom oxidation led to the silyl ether 5. Oxidative rearrange­ment of the tertiary alcohol generated by 1,2-addition to 5 of in situ generated allyl lithium established the enone 6. Again taking advantage of the conformational pref­erence of the seven-membered ring, cyclopropanation of the silyl enol ether derived from 6 proceeded across the open face of the electron-rich alkene to give 7. The other oxygenated quaternary center of 1 was constructed by O-alkylation of 7 with diazo malonate followed by methylation and reduction. Acetylation of the diol 8 proceeded with 10:1 diastereoselectivity, to give, after oxidation, the aldehyde 9. In the first of a sequence of three intramolecular bond-forming reactions, HF.py cyclized the aldehyde onto the endocyclic alkene, and also freed the alcohol, that was alkylated with the dibromide 10 to give 11 as a 1.5:1 mixture of diastereomers. On exposure to SmI2, the major diastereomer cyclized to give a intermediate that was carried on to 1. The minor diastereomer was merely reduced, to a product that could be recycled to 11. With 1 in hand, the stage was set for the second intramolecular cyclization. Even though 1 was predominantly in the lactol form, there was enough of an equilibrium concentration of aldehyde present for the SmI2-mediated cyclization to proceed smoothly to 2. With 2 in hand, in addition to the last intramolecular cyclization, the two stereo­genic centers (marked by an asterisk) had to be inverted. The methyl group adjacent to the ketone was readily equilibrated. The secondary alcohol could be inverted by late-stage oxidation and reduction, and the authors did do that. However, they also observed a small amount of the desired epimeric alcohol 14 from the intramolecu­lar aldol condensation of 12.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.