Abstract

Maturity-onset diabetes mellitus of the young (MODY) is a human genetic syndrome most commonly due to mutations in hepatocyte nuclear factor-1α (HNF-1α). Here, we describe the crystal structure of the HNF-1α dimerization domain at 1.7 Å resolution and assess its structural plasticity. The crystal’s low solvent content (23 %, v/v) leads to tight packing of peptides in the lattice. Two independent dimers, similar in structure, are formed in the unit cell by a 2-fold crystallographic symmetry axis. The dimers define a novel intertwined four-helix bundle (4HB). Each protomer contains two α-helices separated by a sharp non-canonical turn. Dimer-related α-helices form anti-parallel coiled-coils, including an N-terminal “mini-zipper” complementary in structure, symmetry and surface characteristics to transcriptional coactivator dimerization cofactor of HNF-1 (DCoH). A confluence of ten leucine side-chains (five per protomer) forms a hydrophobic core. Isotope-assisted NMR studies demonstrate that a similar intertwined dimer exists in solution. Comparison of structures obtained in multiple independent crystal forms indicates that the mini-zipper is a stable structural element, whereas the C-terminal α-helix can adopt a broad range of orientations. Segmental alignment of the mini-zipper (mean pairwise root-mean-square difference (rmsd) in Cα coordinates of 0.29 Å) is associated with a 2.1 Å mean Cα rmsd displacement of the C-terminal coiled-coil. The greatest C-terminal structural variation (4.1 Å Cα rmsd displacement) is observed in the DCoH-bound peptide. Diabetes-associated mutations perturb distinct structural features of the HNF-1α domain. One mutation (L12H) destabilizes the domain but preserves structural specificity. Adjoining H12 side-chains in a native-like dimer are predicted to alter the functional surface of the mini-zipper involved in DCoH recognition. The other mutation (G20R), by contrast, leads to a dimeric molten globule, as indicated by its 1H-NMR features and fluorescent binding of 1-anilino-8-naphthalene sulfonate. We propose that a glycine-specific turn configuration enables specific interactions between the mini-zipper and the C-terminal coiled-coil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call