Abstract

Two new layered copper hybrid materials, namely, the copper thiophene‐2,5‐diphosphonate [Cu2(H2O)2(O3P–C4H2S–PO3)] (Pnma; a = 7.525 Å, b = 18.292 Å, c = 7.520 Å) and the copper 3‐fluorophenylphosphonate Cu(H2O)PO3–C6H4F (P21/c; a = 14.305 Å, b = 7.550 Å, c = 7.479 Å, β = 92.32°), have been synthesized. These compounds belong to the large homologous Cu(H2O)PO3R/[Cu2(H2O)2(O3P–R–PO3)] series, the structure of which is dictated by the presence of isolated dimeric pyramidal Cu2O6(H2O)2 units. The role of the Cu/H2O molar ratio of 1 in the stabilization of such a structure is discussed in connection with the Jahn–Teller effect of the copper cation. The study of the magnetic behavior of polycrystalline samples of the two compounds has revealed antiferromagnetic coupling between the copper ions. The interactions within the dimeric unit were estimated by the Bleaney–Bowers law with the spin Hamiltonian H = –JSCu1SCu2 + gβHS: J = –6.27 cm–1 for [Cu(H2O)PO3]2C4H2S, and J = –6.07 cm–1 for Cu(H2O)PO3–C6H4F.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.