Abstract

Many metrics have been used in an attempt to predict the effects of secondary tasks on driving behavior. Such metrics often give rise to seemingly paradoxical results, with one metric suggesting increased demand and another metric suggesting decreased demand for the same task. For example, for some tasks, drivers maintain their lane well yet detect events relatively poorly. For other tasks, drivers maintain their lane relatively poorly yet detect events relatively well. These seeming paradoxes are not time-accuracy trade-offs or experimental artifacts, because for other tasks, drivers do both well. The paradoxes are resolved if demand is modeled in two orthogonal dimensions rather than a single driver workload dimension. Principal components analysis (PCA) was applied to the published data from four simulator, track, and open road studies of visual-manual secondary task effects on driving. PCA reduced the task metrics to two underlying orthogonal components (hereafter, dimensions) which were consistent across studies, herein designated as physical and cognitive demand. Physical demand is associated with lateral and longitudinal performance (lane crossings, standard deviation of lateral position and speed), with correlated surrogate metrics of task time, step count, total glance time, number of glances, and subjective workload. Cognitive demand is associated with event detection (RT and miss rate), with correlated surrogate metrics of mean single glance time, long single glances, speed reduction, and task errors. The Dimensional Model of Driver Demand allows for a common simplified understanding of all these measures of visual-manual secondary task effects on performance. Language: en

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.