Abstract

By transforming a 3D problem into some related 2D problems, the dimension splitting element-free Galerkin (DSEFG) method is proposed to solve 3D transient heat conduction problems. The improved element-free Galerkin (IEFG) method is used for 2D transient heat conduction problems, and the finite difference method is applied in the splitting direction. The discretized system equation is obtained based on the Galerkin weak form of 2D problem; the essential boundary conditions are imposed with the penalty method; and the finite difference method is employed in the time domain. Four exemplary problems are chosen to verify the efficiency of the DSEFG method. The numerical solutions show that the efficiency and precision of the DSEFG method are greater than ones of the IEFG method for 3D problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.