Abstract

The diffusion-ionization mechanism of the transverse propagation of a short Townsend discharge has been investigated theoretically and experimentally near the minimum of the Paschen curve. It has been found that the longitudinal electron diffusion causes significant enhancement of the transverse discharge propagation. The effective coefficient of diffusion-ionization discharge propagation in neon has been measured in different electric fields (E/p ≈ 100–220 V cm−1 Torr−1); its value may be several times larger than the ambipolar diffusion coefficient. The transverse-instability boundary of a Townsend discharge in neon has been determined theoretically and experimentally. The diffusion contribution to the boundary condition determining the normal current density is estimated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.