Abstract

Steady-state free precession (SSFP) imaging with an added field gradient pulse is strongly sensitive to self-diffusion and other motions of water. In an earlier theoretical analysis of diffusion attenuation due to a single gradient pulse Wu and Buxton (J. Magn. Reson. 90, 243, 1990) concluded that the diffusion sensitivity would be increased with smaller flip angles. In this paper a partial partition analysis of the different echo pathways contributing to the signal is used to illustrate the contribution of stimulated echo pathways with long diffusion times as the source of the enhanced diffusion sensitivity with low flip angles. Experimental imaging studies in phantoms and the brain of a human subject demonstrate substantially greater signal attenuation with small flip angles (< 30 degrees). The theoretical equation of Wu and Buxton provides a reasonable fit to the experimental data, accounting for the flip angle and TR dependence, but the estimated diffusion coefficients are larger than expected from previous studies. The large attenuation observed in the human studies, particularly in cerebrospinal fluid, is most likely due to other tissue motions. Both the theoretical calculations and the experimental data show that for the same gradient strength the diffusion sensitivity of SSFP is much greater than the diffusion sensitivity of conventional spin-echo methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call