Abstract

In this paper, the diffusion isotope effect and diffusion mechanism are investigated by means of molecular dynamics simulations in two liquid alloys, Ni-Ag and Ni-Cu. The values for the diffusion isotope effect parameter allow for the estimate of the number of atoms which are moving cooperatively in a basic diffusion event as experienced by a given atomic species. It is shown that the composition dependence ofNDis typically very small. However, the temperature dependence of this parameter is much more pronounced. In addition, it is shown that, on average, in these alloys and temperatures considered,NDis limited to the range: 5<ND<17. This is consistent with results of molecular dynamics simulations on the average coordination number calculations. This would suggest that, together with a given atom, depending on temperature, the neighbouring atoms are all involved in the basic diffusion event.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.