Abstract

Kernel-based nonlinear dimensionality reduction methods, such as Local Linear Embedding (LLE) and Laplacian Eigenmaps, rely heavily upon pairwise distances or similarity scores, with which one can construct and study a weighted graph associated with the data set. When each individual data object carries additional structural details, however, the correspondence relations between these structures provide extra information that can be leveraged for studying the data set using the graph. Based on this observation, we generalize Diffusion Maps (DM) in manifold learning and introduce the framework of Horizontal Diffusion Maps (HDM). We model a data set with pairwise structural correspondences as a fibre bundle equipped with a connection . We demonstrate the advantage of incorporating such additional information and study the asymptotic behavior of HDM on general fibre bundles. In a broader context, HDM reveals the sub-Riemannian structure of high-dimensional data sets, and provides a nonparametric learning framework for data sets with structural correspondences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.