Abstract
Directional solidification is a paradigm process to gain the desired microstructure via certain applied solidification parameters. A thorough understanding of the diffusion-limited solid-liquid interface morphology evolution from initial transient to steady state is of uppermost importance to optimize the solidification processes. The rapid development of quantitative phase-field model provides a feasible computational tool to explore the underlying physics of the morphological transition at different stages. On basis of the diffusion-limited quantitative phase-field simulations using adaptive finite element method, the directional solidification of Al-4wt.%Cu alloy is characterized and both the solid interface propagation speed and solute profile are analyzed. The simulations are then compared with the in situ and real-time observation by means of synchrotron radiation x-ray radiography image. Good agreements are obtained between simulations and experimental data. Detailed mechanism that controls the morphological instability and transition are then addressed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.