Abstract

Directional solidification is a paradigm process to gain the desired microstructure via certain applied solidification parameters. A thorough understanding of the diffusion-limited solid-liquid interface morphology evolution from initial transient to steady state is of uppermost importance to optimize the solidification processes. The rapid development of quantitative phase-field model provides a feasible computational tool to explore the underlying physics of the morphological transition at different stages. On basis of the diffusion-limited quantitative phase-field simulations using adaptive finite element method, the directional solidification of Al-4wt.%Cu alloy is characterized and both the solid interface propagation speed and solute profile are analyzed. The simulations are then compared with the in situ and real-time observation by means of synchrotron radiation x-ray radiography image. Good agreements are obtained between simulations and experimental data. Detailed mechanism that controls the morphological instability and transition are then addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.