Abstract

The mathematical foundations of the rules used to differentiate functions of conjugate complex variables are examined and their use is illustrated with several power network analysis examples. Using conjugate complex notation in power network analysis, it is possible to obtain directly the real Jacobian matrix of the power-flow equations. The author introduces the concept of bicomplex Jacobian matrix and states the rules to invert it. The expressions which are above often permit an immediate physical interpretation.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.