Abstract

Multivariate Bessel processes describe Calogero-Moser-Sutherland particle models. They depend on a root system and a multiplicity $k$. Recently, several stochastic limit theorems for $k\to\infty$ were derived where the limits depend on the solutions of associated ODEs in these freezing regimes. In this paper we study these ODEs which are singular on the boundaries of their domains. We prove that for arbitrary initial conditions on the boundary, the ODEs have unique solutions in their domains for $t \gt 0$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.