Abstract

Mixture distributions are extensively used as a modeling tool in diverse areas from machine learning to communications engineering to physics, and obtaining bounds on the entropy of mixture distributions is of fundamental importance in many of these applications. This article provides sharp bounds on the entropy concavity deficit, which is the difference between the differential entropy of the mixture and the weighted sum of differential entropies of constituent components. Toward establishing lower and upper bounds on the concavity deficit, results that are of importance in their own right are obtained. In order to obtain nontrivial upper bounds, properties of the skew-divergence are developed and notions of “skew” <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$f$ </tex-math></inline-formula> -divergences are introduced; a reverse Pinsker inequality and a bound on Jensen-Shannon divergence are obtained along the way. Complementary lower bounds are derived with special attention paid to the case that corresponds to independent summation of a continuous and a discrete random variable. Several applications of the bounds are delineated, including to mutual information of additive noise channels, thermodynamics of computation, and functional inequalities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.