Abstract

BackgroundMetronomic chemotherapy has shown promising activity against solid tumors and is believed to act in an antiangiogenic manner. The current study describes and quantifies the therapeutic efficacy, and mode of activity, of metronomic gemcitabine and a dedicated antiangiogenic agent (DC101) in patient-derived xenografts of pancreatic cancer.MethodsTwo primary human pancreatic cancer xenograft lines were dosed metronomically with gemcitabine or DC101 weekly. Changes in tumor growth, vascular function, and metabolism over time were measured with magnetic resonance imaging, positron emission tomography, and immunofluorescence microscopy to determine the anti-tumor effects of the respective treatments.ResultsTumors treated with metronomic gemcitabine were 10-fold smaller than those in the control and DC101 groups. Metronomic gemcitabine, but not DC101, reduced the tumors’ avidity for glucose, proliferation, and apoptosis. Metronomic gemcitabine-treated tumors had higher perfusion rates and uniformly distributed blood flow within the tumor, whereas perfusion rates in DC101-treated tumors were lower and confined to the periphery. DC101 treatment reduced the tumor’s vascular density, but did not change their function. In contrast, metronomic gemcitabine increased vessel density, improved tumor perfusion transiently, and decreased hypoxia.ConclusionThe aggregate data suggest that metronomic gemcitabine treatment affects both tumor vasculature and tumor cells continuously, and the overall effect is to significantly slow tumor growth. The observed increase in tumor perfusion induced by metronomic gemcitabine may be used as a therapeutic window for the administration of a second drug or radiation therapy. Non-invasive imaging could be used to detect early changes in tumor physiology before reductions in tumor volume were evident.Electronic supplementary materialThe online version of this article (doi:10.1007/s10456-016-9503-z) contains supplementary material, which is available to authorized users.

Highlights

  • Metronomic chemotherapy has shown promising activity against solid tumors and is believed to act in an antiangiogenic manner

  • Tumors treated with metronomic gemcitabine were 10-fold smaller than those in the control and DC101 groups

  • The aggregate data suggest that metronomic gemcitabine treatment affects both tumor vasculature and tumor cells continuously, and the overall effect is to significantly slow tumor growth

Read more

Summary

Introduction

Metronomic chemotherapy has shown promising activity against solid tumors and is believed to act in an antiangiogenic manner. The current study describes and quantifies the therapeutic efficacy, and mode of activity, of metronomic gemcitabine and a dedicated antiangiogenic agent (DC101) in patient-derived xenografts of pancreatic cancer. W. Ng was formerly at the BC Cancer Agency and the University of British Columbia. The clinical response to gemcitabine is significant, but its effect on Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada. Gemcitabine’s toxic side effects can be dose limiting and some pancreatic tumors are inherently resistant to the drug. Conventional chemotherapy for pancreatic cancer consists of maximum tolerated doses (MTD) of gemcitabine, in which the patient is given the highest possible drug dose that does not cause life-threatening side effects. The inherently toxic nature of MTD treatment requires drugfree breaks to allow the patient to recover from systemic drug toxicities before resuming the treatment. More effective strategies for treating and controlling pancreatic cancer are needed

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.