Abstract

It has been known that nitrogenous fertilizers can either stimulate or inhibit methane oxidation in soils. The mechanism, however, remains unclear. Here we conducted laboratory incubation experiments to evaluate the effects of ammonium versus nitrate amendment on CH4 oxidation in a rice field soil. The results showed that both N forms stimulated CH4 oxidation. But nitrate stimulated CH4 oxidation to a greater extent than ammonium per unit N base. The 16S rRNA genes and the pmoA genes were analyzed to determine the dynamics of total bacterial and methanotrophic populations, respectively. The methanotrophic community consisted of type I and type II methanotrophs and was dominated by type I group after two weeks of incubation. Nitrate promoted both types of methanotrophs, but ammonium promoted only type I. DNA-based stable isotope probing confirmed that ammonium stimulated the incorporation of 13CH4 into type I methanotrophs but not type II, while nitrate caused almost homogenous distribution of 13CH4 in type I and type II methanotrophs. Our study suggests that nitrate can promote CH4 oxidation more significantly than ammonium and is probably a better N source for both types of methanotrophs in rice field soil. More investigations, e.g. using 15N labeling, are necessary to elucidate this possibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call