Abstract

In working memory (WM), the ability to concurrently integrate different types of information and to maintain or manipulate them promotes the flow of ongoing tasks. WM is a key component of normal human cognition. In this study, we applied a combined voxel-based morphometry (VBM) and resting-state functional connectivity (rsFC) analysis to investigate the relationship between the ability of object and spatial working memory (WM), and regional gray matter density (GMD), as well as intrinsic functional connectivity. The VBM analysis showed a positive correlation between the individual difference of object WM and GMD in the right middle occipital gyrus (MOG) and the left superior temporal gyrus (STG), which are responsible for coding object information and processing the shape of an object. The individual difference of the spatial WM was positively related to GMD in the right middle frontal gyrus (MFG) located in the dorsolateral prefrontal cortex (dlPFC), which confirmed that it is an important region for memory stores and maintains WM spatial representations. Further functional connectivity analysis revealed that the individual difference of object WM was significantly correlated with the rsFC of right intraparietal sulcus (IPS) – left postcentral gyrus (PostCG)/right precentral gyrus (PreCG)/left Supplementary Motor Area (SMA). While the capacity of spatial WM was significantly associated with the FC strength of the left dlPFC – left precuneus, right dlPFC – right MFG, and the left superior frontal sulcus (SFS) – left SMA/ right inferior parietal lobe (IPL). Our findings suggest that object WM is associated with the structure and functional organization of the brain regions involved in the ventral pathway (occipital – temporal regions) and the capacity of spatial WM is related to the dorsal pathway (frontal – parietal regions).

Highlights

  • Working memory (WM) refers to a limited system that provides for the temporary storage and manipulation of information

  • We investigate the brain regions associated with object and spatial information, using structural imaging analyzed by voxel-based morphometry (VBM) and extract the obtained region seed regions (ROI) for further resting-state functional connectivity (rsFC) analysis to investigate the associated brain regions of both object and spatial working memory (WM)

  • The present study aimed to investigate the associations between regional gray matter density (GMD) as well as intrinsic functional connectivity underlying object and spatial WM

Read more

Summary

INTRODUCTION

Working memory (WM) refers to a limited system that provides for the temporary storage and manipulation of information. It is worth noting that several imaging studies in humans have found no significant differences in the activation of brain networks for these two types of tasks (Baker et al, 1996; Nystrom et al, 2000), and single cell recording data showed that many cells across both the dorsal and ventral prefrontal cortex maintain both spatial and object information. Based on previous studies (Fox and Raichle, 2007; Kanai and Rees, 2011), we hypothesize that the individual difference in object WM might be related to the brain regions of the temporal and the ventral frontal cortex and the individual difference might be associated with rsFC with the ventral stream. For spatial WM, we hypothesize that the individual difference may be associated with the parietal brain region and the dlPFC and might be related to rsFC in the dorsal stream

Participants
RESULTS
DISCUSSION
CONCLUSION
ETHICS STATEMENT
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call