Abstract

Riparian zones, crucial for linking fluvial and terrestrial habitats, are among the most diverse ecosystems. However, they are intensively invaded by alien plants, particularly in dam-regulated rivers. Therefore, understanding the mechanisms underlying plant invasion in dam-regulated river systems has become increasingly important, given that over two-thirds of global rivers are artificially regulated. Regulated rivers may flood upland areas or pristine riparian zones, resulting in shorelines developed from pre-upland and pre-riparian areas. However, differences in invasion intensities, adaptive strategies of invasive plants, and native species' resistance (namely the diversity-invasibility relationship) across these shorelines are unclear. To address these uncertainties, we performed field investigations in the Three Gorges Reservoir (TGR) on the upper Yangtze River, where both pre-upland and pre-riparian shorelines are present. Our findings indicate that pre-upland shorelines are more intensively invaded, showing higher relative richness and cover of invasive species. Invasive plants in this area displayed more conservative resource strategies and greater drought tolerance, exhibiting lower community-weighted mean (CWM) specific leaf area, higher CWM leaf dry mass content, and larger CWM seed mass. Pre-upland shorelines' invasibility decreased as the richness and cover of native species increased, a trend not observed in pre-riparian shorelines. The observed variations in plant invasion between the two shoreline types are primarily driven by differences in resident plant presence, soil moisture levels, and hydrological disturbances. This study provides valuable insights for policymakers and practitioners involved in managing invasive plants in regulated river ecosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.