Abstract

Uncertainty estimation in coordinate measuring machine (CMM) measurements is one of the highest priority tasks in modern industrial world due to its importance in the manufacturing metrology, especially if we take into account the fact that workpieces, according to a new generation of geometrical product specifications, can be accepted/rejected only on the basis of the total measurement results. Evaluation of measurement uncertainty of a CMM is a complex task, especially in the verification of errors of forms. Among several standard methods that can be used to estimate measurement uncertainty, we performed a comparison between two of these for the case of flatness measurement. Optical flat was used in order to exclude a number of essential factors in the case study. The results showed that the expanded measurement uncertainty assessed by GUM is greater than the value of the expanded measurement uncertainty obtained using the ISO 15530 method. However, both methodologies have shown that the maximum permissible error of a CMM has the greatest impact on uncertainty and also, that the total result evaluated by both approaches is close to the maximum permissible error of a CMM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call