Abstract

We discuss the desorption induced by electronic transitions (DIET) of constituent atoms from several types of non-metallic solids, particularly the DIET from semiconductors by valence electron excitations. We first classify the non-metallic solids into type A, in which no self-trapping of excitons occurs, and type B, in which self-trapping occurs. We argue that in type B solids the localization of electron-hole pairs or excitons through the self-trapping on the surfaces induces the Menzel-Gomer-Redhead-type anti-bonding state resulting in DIET. For the DIET from type A non-metals, typically semiconductors, in which the self-trapping is not induced, we derive two important characteristics: (1) the emission is related to defects on the surfaces and (2) single electronic excitation cannot induce the emissions. The recent experimental observations of laser-induced emissions satisfying these characteristics for the DIET from semiconductors are surveyed. Furthermore we present experimental evidence demonstrating that the observed emissions are of the electronic origin: the emission occurs dominantly when the excitation is localized on the surface. Finally, surface phenomena, such as laser ablation and dry etching, related to the DIET from semiconductors, and the applications of the DIET from semiconductors are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call