Abstract
Despite the sizable literature on computer simulations of water and aqueous solutions, very little is known about one of the most interesting properties of water, namely its dielectric constant. In this paper it is demonstrated that the methodological as well as technological problems that have hitherto impeded the calculation of dielectric properties of realistic model systems have now been overcome. Using a small dedicated array processor, a series of extensive simulations with the MCY (Matsuoka–Clementi–Yoshimine) potential for water have been performed in reaction field geometry, and it is shown that consistent (i.e., free from boundary effects) and accurate results may be obtained for the full frequency-dependent dielectric constant, from the static up to the submillimeter range. At the same time it is found that the rather popular MCY model is not able to satisfactorily reproduce the dielectric properties of real water: Both the static dielectric constant and the principal dielectric relaxation time are much lower than the experimental values, and the temperature dependence of the Kirkwood g factor has the wrong sign. It is concluded that in the future the calculation of the dielectric constant, being a measure of orientational correlations between molecules, will play an important part in assessing the reliability of model potentials for water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.