Abstract

In this paper we introduce a new partial order on a ring, namely the diamond partial order. This order is an extension of a partial order defined in a matrix setting in [J.K. Baksalary and J. Hauke, A further algebraic version of Cochran’s theorem and matrix partial orderings, Linear Algebra and its Applications, 127, 157–169, 1990]. We characterize the diamond partial order on rings and study its relationships with other partial orders known in the literature. We also analyse successors, predecessors and maximal elements under the diamond order.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.