Abstract

When a drop impacts a smooth, dry surface at a velocity above the so-called critical speed for drop splashing, the initial liquid volume loses its integrity, fragmenting into tiny droplets that are violently ejected radially outwards. Here, we make use of the model of Riboux & Gordillo (Phys. Rev. Lett., vol. 113, 2014, 024507), together with a one-dimensional approximation describing the flow in the ejected liquid sheet and of balances of mass and momentum at the border of the sheet, to calculate mean sizes and velocities of the ejected drops. The predictions of the model are in good agreement with experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.